
A capability inspired low level security model
based on modern Linux kernels

Stephan Soller, Computer Science and Media
Stuttgart Media University

ss312@hdm-stuttgart.de

The Linux kernel is evolving constantly as APIs change
or new APIs are added. This paper explores how a Linux
3.5 kernel can be used to implement some aspects of a
capability security model. It proposes an implementa-
tion and discusses its problems and limitations.

Current security software relies on several approaches
to handle malicious software:

• Signatures are used to identify malicious pro-
grams.

• Virus scanner heuristics analyze the structure and
behavior of programs to identify yet unknown
threads.

• Access control lists (ACLs) are used to configure
access privileges to critical data.

Signatures and heuristics suffer from occasional false
positives. ACLs can become very complex and are subject
to misconfiguration.

In the 1980s another security mechanism gained trac-
tion: capability based security [1] [2]. The main concept
of capability based security is the principal of least au-
thority: Every process has only access to the data re-
quired for the current task. Access to this data is granted
by whoever triggered the action. Access rights are
passed along with the data whenever a new task is creat-
ed. The access rights "flow" with the data.

Early efforts focused on hardware based capabilities
[3], usually by associating capabilities with memory ad-
dresses. Passing the pointer to a function would grant
the called function the permission to dereference the
pointer and work with that memory. More modern ef-
forts defined and implemented capability safe subsets of
object oriented programming languages [4], associating
capabilities with objects. Passing an object to a method

grants the called method the privilege to interact with
that object. Unfortunately these concepts never became
popular among main stream programmers.

Thanks to several recent developments renewed ef-
fort is put into sandboxing single processes from the rest
of the system. Modern browsers try to isolate tabs from
one another as well as isolating insecure subsystems like
plugins from the rest of the browser [5]. On Mac OS X, for
example, video codecs are isolated from the rest of the
video player [6]. Those trends also led to new features in
the Linux kernel and this paper explores how a modern
Linux kernel can be used to implement a simplified ca-
pability based security model.

The design uses two APIs of the Linux kernel. seccomp-
bpf [7] is an interface to limit the system calls a process
can perform. It was introduced in Linux 3.5 [8]. UNIX do-
main sockets are used to pass open file descriptors be-
tween processes [9].

One master process is responsible for starting new
sandboxed child processes. This happens via the fork()

and exec() functions. Once the new child process is
forked seccomp-bpf is used to install a filter into the new
child that denies most system calls. Only a minimal set of
safe system calls is whitelisted [10]. System calls that can
open new files or network connections are not among
them. A sandboxed child process without any resources
granted to it can't affect the system in any way except
consuming CPU time.

For the child to do useful work a secure way to ex-
change data with the sandbox is required. With UNIX do-
main sockets a process can send and receive file descrip-
tors from another process. For example a process which
manages the users files can open a required file and pass
the file descriptor to a sandboxed process. This way the

Abstract

Introduction1.

Basic approach2.

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



sandboxed process gains access to the file it requires but
not to any other resources.

Installing a seccomp-bpf filter

seccomp-bpf builds on the original secure computing
mode. With the prctl() system call the process could
be put into a mode where only the system calls read(),
write(), exit() and sigreturn() could be used [11].
Every other system call triggers a SIGKILL and termi-
nates the process. Once the seccomp mode is entered
there is no way to leave it since a call to prctl() would
kill the process as well.

The original seccomp mode only allows a fixed and
very minimalistic set of system calls. This limited sec-
comp to pure compute tasks since a sandboxed process
usually requires an extended set of system calls. A way
to customize the set of allowed system calls is provided
by seccomp-bpf. It extends the original seccomp mode
with a user defined simple filter program that decides
which system call is allowed. For that it repurposes parts
of the network packet filtering system. Because of that
the filter rules are defined as a Berkeley Packet Filter.
This somewhat unusual approach allows seccomp-bpf to
use well tested and maintained code [12].

Installation of a seccomp-bpf filter also works via the
prctl() system call. But an array of filter rules is passed
along as an extra parameter [10]. In the simplest case
these filter rules contain a list of allowed system calls.
But should the need arise these filter rules can also ac-
cess the parameters of the system call in question (but
not dereference pointers). This can be used to allow
some system calls only on predefined file descriptors.

Exchanging data with the sandbox

To send and receive file descriptors with a UNIX domain
socket the recvmsg() and sendmsg() system calls are
used. With them multiple file descriptors can be send
along as an "ancillary messages" [9]. Therefore the
seccomp-bpf filter needs to allow these system calls.

The UNIX domain socket connection is initiated by
the master process before forking. It creates a new pair
of socket file descriptors with the socketpair() system
call. After forking the unnecessary ends are closed and
the seccomp-bpf filter is installed. Via this initial con-
nection the master can grant the child access to the re-

sources it needs. It can also pass along connections to
other (sandboxed) processes the client needs to interact
with.

If the seccomp-bpf filter of a sandbox allows the
clone(), exec() and socketpair() system calls the
child can even fork new sandboxes by itself. If prctl()
with the PR_SET_SECCOMP option is allowed the child
can restrict the available system calls even further.
seccomp-bpf filters are inherited by child processes and
new filters are stacked on top of the previous filters.
This ensures that a sandboxed process can't break out by
forking itself or by setting a new filter.

Usually processes cooperate with one another. For ex-
ample a file browser might display all files in a directory.
To display the contents of a file it employs another
process, e.g. an image viewer. In a sandboxed environ-
ment the image viewer should only be granted read-only
access to the files it is supposed to display. This chapter
describes several problems with file descriptor (fd) pass-
ing and suggests various solutions.

In Linux most state of opened files isn't part of the
file descriptor but of the corresponding kernel object
[13]. This includes the access mode, status flags
(O_NONBLOCK, etc.) and the file offset. As a consequence
all file descriptors referring to the same kernel object
share this state. Whether they're duplicated with dup()

or send to another process via a UNIX domain socket.

Shared status flags and file offset

The shared file offset is used by the read() and write()

system calls. One process reads data and advances the
file offset for all other processes, too. So if multiple
processes read from the same fd each process will skip
the data read by the others. This can lead some unex-
pected behavior if the processes are not aware of each
other.

This can be solved by using the pread() and pwrite()

system calls for accessing files (or any seekable fd).
These system calls require to explicitly pass the file off-
set and allow each process to keep track of its own pri-
vate position within the file.

Passing file descriptors and
restricting access

3.

2



The problem is also avoided by using mmap() to map
the entire file into memory. When reading from the
memory map the pointer already specifies the exact po-
sition. Therefore the file offset of the kernel object is not
used.

Nonblocking I/O can suffer a similar problem. If one
process sets the O_NONBLOCK flag all other fds referring to
the same kernel object are also effected. If other process-
es aren't aware of that it can easily lead to unexpected
behavior. As a workaround the poll() system call can be
used. With a timeout of 0 it returns immediately even if
a file descriptor isn't ready [ref internet article].

Shared access mode

Linux provides no way to narrow the access mode of
an individual file descriptor. It's not even possible to
change the access mode of the associated kernel object
once it has been opened. But to grant as little access as
possible it is desirable to create a read-only version of a
read-write file descriptor.

One way to solve this limitation is to let the original
power box open the same file with the narrowed access
rights. Thus creating a new kernel object with the de-
sired access mode. This requires a protocol so a sand-
boxed process can request a "reopen". But it's only pos-
sible when a connection to the original power box is
available. And even then only with file descriptors that
can be opened again (e.g. files and POSIX shared memo-
ry). Access to network connections can't be restricted in
such a way. Alternatively a read-only file descriptor can
be passed along with each read-write file descriptor. If a
process wishes to delegate read-only access it can send
the read-only file descriptor. But the same "reopen" lim-
itation applies here.

Another way to only grant restricted access is to build
a "proxy pipe". The owner of the fd does not send the fd
to the delegate process directly. Instead it creates a new
pipe with the pipe() system call and sends the read-only
end of the pipe. It can then monitor the original fd for
changes via the poll() system call. Once data is avail-
able it can be splice()ed into the pipe where the del-
egate process will receive it. This approach adds over-
head to the data transfer and the fd received by the del-
egate process neither be mmap()ed into its memory nor
supports seeking. But the same applies to all scenarios
where traditional shell piping is used. It also allows to

implement write-only delegation, e.g. of a network con-
nection by swapping the pipe ends.

Revoking access to a granted fd

In some situations it can be desirable to revoke access
to an fd once granted to another process. Linux doesn't
allow that but it can be implemented with the same
"proxy pipe" approach mentioned before.

A pipe is created and the read end is shared with the
delegate process. Revoking access then becomes a sim-
ple matter of closing the write end of the pipe and stop-
ping to feed data into it. This leaves the delegate process
no way to access the data. The same pipe-approach can
be used for revocable write-only access. In that case the
write end is passed to the delegate process.

For revocable read and write access a bidirectional
pipe is required: a UNIX domain socket. Instead of creat-
ing a pipe the socketpair() system call is used to create
an unnamed socket. One end of the socket pair can then
be sent to the delegate process. Again, to revoke access
closing our end of the socket pair is sufficient.

As with the "proxy pipe" above the file descriptor the
delegate process receives does not support seeking nor
mmap()ing.

While the proposed mechanisms fulfill basic capability
functions some severe limitations remain.

The open() system call of sandboxed processes is
blocked to prevent them from affecting the system. But
loading of shared libraries involves reading the shared
object via the open() system call. Therefore sandboxed
process can't load new shared libraries. This affects any
kind of shared library loading. Shared libraries loaded
by the exec() system call and libraries manually loaded
with dlopen(). To work around this issue all dependen-
cies have to be statically linked into the executable. This
will hurt performance and increase the overall memory
footprint of applications. It can even reduce overall sys-
tem security since common shared libraries can't be up-
dated without recompiling (or at least relinking) all ap-
plications that use it.

Limitations and further
work

4.

3



Alternatively a chroot() cage can be used to limit file
system access of sandboxed processes. Required shared
libraries and other files can then be hard linked into that
chroot cage. The fanotify API [14] could also be used to
deny most open() calls and only allow those the applica-
tion has access to.

Delegation of file descriptors with a reduced access
mode also remains troublesome. If file seeking or mem-
ory mapping is required the file has to be "reopened" by
the power box that has direct access to the file. Other
more nestable approaches require pipes and thus break
seeking and memory mapping. This can have a severe
impact on application code. There is no obvious solution
to this problem yet.

[1] What is a Capability, Anyway?
http://www.eros-os.org/essays/capintro.html
Retrieved 2013-02-02

[2] Wikipedia: Capability-based security
http://en.wikipedia.org/wiki/Capability-
based_security
Retrieved 2013-02-02

[3] The Cambridge CAP Computer, Capability-Based
Computer Systems
http://www.cs.washington.edu/homes/levy/ca-
pabook/Chapter5.pdf
Levy, Henry M. (1984). Digital Press.

[4] joe-e, Capability-secure subset of Java
http://code.google.com/p/joe-e/
Retrieved 2013-02-02

[5] Chromium Blog: Multi-process Architecture
http://blog.chromium.org/2008/09/multi-
process-architecture.html
Retrieved 2013-02-02

[6] Privilege separation, Mac OS X 10.7 Lion: the Ars
Technica review
http://arstechnica.com/apple/2011/07/mac-os-
x-10-7/9/
Retrieved 2013-02-02

[7] SECure COMPuting with filters
http://git.kernel.org/?p=linux/kernel/git/tor-
valds/linux.git;a=blob;f=Documentation/prctl/
seccomp_filter.txt
Retrieved 2013-02-02

[8] Introducing Chrome's next-generation Linux
sandbox
http://blog.cr0.org/2012/09/introducing-
chromes-next-generation.html
Retrieved 2013-02-02

[9] Ancillary Messages, Man page unix(7), Linux
Programmer's Manual
http://man7.org/linux/man-pages/man7/
unix.7.html
Retrieved 2013-02-02

[10] Using simple seccomp filters
http://outflux.net/teach-seccomp/
Retrieved 2013-02-02

[11] PR_SET_SECCOMP option with SEC-
COMP_MODE_STRICT, Man page prctl(2), Linux
Programmer's Manual
http://man7.org/linux/man-pages/man2/
prctl.2.html
Retrieved 2013-02-02

[12] Yet another new approach to seccomp
http://lwn.net/Articles/475043/
Retrieved 2013-02-02

[13] Man page open(2), Linux Programmer's Manual
http://man7.org/linux/man-pages/man2/
open.2.html
Retrieved 2013-02-03

[14] Manpages for the fanotify API
http://git.xypron.de/?p=fanotify-manpages.git
Retrieved 2013-02-02

References5.

4

http://www.eros-os.org/essays/capintro.html
http://en.wikipedia.org/wiki/Capability-based_security
http://www.cs.washington.edu/homes/levy/capabook/Chapter5.pdf
http://code.google.com/p/joe-e/
http://blog.chromium.org/2008/09/multi-process-architecture.html
http://arstechnica.com/apple/2011/07/mac-os-x-10-7/9/
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=blob;f=Documentation/prctl/seccomp_filter.txt
http://blog.cr0.org/2012/09/introducing-chromes-next-generation.html
http://man7.org/linux/man-pages/man7/unix.7.html
http://outflux.net/teach-seccomp/
http://man7.org/linux/man-pages/man2/prctl.2.html
http://lwn.net/Articles/475043/
http://man7.org/linux/man-pages/man2/open.2.html
http://git.xypron.de/?p=fanotify-manpages.git

	A capability inspired low level security model based on modern Linux kernels
	Abstract
	Introduction
	Basic approach
	Installing a seccomp-bpf filter
	Exchanging data with the sandbox

	Passing file descriptors and restricting access
	Shared status flags and file offset
	Shared access mode
	Revoking access to a granted fd

	Limitations and further work
	References


